Skip to main content

poolAssetOnDestinationWithHook

The poolAssetOnDestinationWithHook method generates a solution for pooling token balances from multiple source chains and transferring them to a specified destination chain, followed by a contract call on the destination chain. This method calculates the best combination of transfers from available source chains and includes a contract interaction after the token transfer.

Cross-Chain Aggregation Behavior

When pooling balances from multiple chains, the contract call will be executed once per source chain. This means the same contract will be called multiple times, which may result in unintended behavior for certain use cases. Ensure that your contract can handle repeated calls, as this may not be suitable for actions like NFT minting or governance voting, where a single action is expected.

This behavior is generally fine for operations like staking or liquidity deposits, where multiple transactions are acceptable.

Usage

In this example, a token transfer (e.g., USDC) is pooled from multiple source chains, followed by a contract call on the destination chain. You need to provide outputTokenAddress and approvalAddress to allow the contract to move tokens on behalf of the user.

import { Sprinter, Environment } from "@chainsafe/sprinter-sdk";

const sprinter = new Sprinter({ baseUrl: Environment.TESTNET });

const settings = {
account: "0xYourAddressHere",
destinationChain: 11155111, // Sepolia testnet
token: "USDC",
amount: 1000000, // Targeted balance on the destination chain, in the smallest denomination
contractCall: {
contractAddress: "0xContractAddressHere",
callData: "0xSomeCallData", // Encoded contract interaction data
gasLimit: 100000,
outputTokenAddress: "0xOutputTokenAddressHere", // Where tokens will be sent
approvalAddress: "0xApprovalAddressHere", // Contract that needs approval to transfer tokens
},
recipient: "0xRecipientAddress", // Optional recipient of leftover tokens
sourceChains: [84532, 1993], // Optional: List of source chains to be considered
};

sprinter.poolAssetOnDestinationWithHook(settings).then((solution) => {
console.log(solution);
});
note

You can limit the solution to a specific source chain using the sourceChains field. For example, to use only BaseSepolia (chain ID 84532) and another chain, provide it as an array like this:

sourceChains: [84532, 1993];

If omitted, Sprinter will consider all available source chains.

Example: Using fetchOptions

sprinter
.poolAssetOnDestinationWithHook(settings, { baseUrl: "https://custom.api.url" })
.then((solution) => {
console.log(solution);
});

Parameters

  • settings: (Required) An object containing the following fields:
    • account: The user’s address.
    • destinationChain: The ID of the destination chain.
    • token: The symbol of the token to be pooled and transferred (e.g., USDC, ETH).
    • amount: The target amount of the token on the destination chain, in the smallest denomination (e.g., for USDC with 6 decimals, 1 USDC = 1,000,000).
    • contractCall: An object containing the contract call details, depending on the type of contract call:
      • Native Contract Call:
        • contractAddress: The contract address on the destination chain.
        • callData: The data to interact with the contract, in hex format.
        • gasLimit: The maximum amount of gas to use for the contract call.
      • Token Contract Call:
        • contractAddress: The contract address on the destination chain.
        • callData: The data to interact with the contract, in hex format.
        • gasLimit: The maximum amount of gas to use for the contract call.
        • outputTokenAddress?: (Optional) The token address where tokens will be sent after the contract call.
        • approvalAddress?: (Optional) The contract address that requires approval to transfer tokens (e.g., for transferFrom).
    • recipient?: (Optional) The address of the recipient of any leftover tokens.
    • sourceChains?: (Optional) An array of source chain IDs to be considered for pooling. If omitted, Sprinter will use all available source chains.
    • threshold?: (Optional) The minimum amount of the token to leave on the source chain, in the smallest denomination (useful for avoiding emptying the source chain completely).
  • fetchOptions?: (Optional) An object containing baseUrl to override the default API endpoint for this request.

Creating callData

The following examples demonstrate how to create the callData parameter required for interacting with a staking smart contract. We provide examples using different web3 libraries: Web3JS, Viem, and Ethers.

Show Example Staking Contract and ABI
pragma solidity ^0.8.0;

contract StakingContract {
mapping(address => uint256) public stakes;
uint256 public totalStakes;

function stake(uint256 amount) public {
require(amount > 0, "Amount must be greater than zero");
stakes[msg.sender] += amount;
totalStakes += amount;
}

function withdraw(uint256 amount) public {
require(amount > 0 && stakes[msg.sender] >= amount, "Invalid amount");
stakes[msg.sender] -= amount;
totalStakes -= amount;
}

function getStake(address user) public view returns (uint256) {
return stakes[user];
}
}
{
"abi": [
{
"inputs": [
{
"internalType": "uint256",
"name": "amount",
"type": "uint256"
}
],
"name": "stake",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "amount",
"type": "uint256"
}
],
"name": "withdraw",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "user",
"type": "address"
}
],
"name": "getStake",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
}
]
}
import Web3 from 'web3';
import contractABI from './stakingContractABI';

const web3 = new Web3('<YOUR_INFURA_OR_ALCHEMY_URL>');
const contractAddress = '<YOUR_CONTRACT_ADDRESS>';

const stakingContract = new web3.eth.Contract(contractABI, contractAddress);
const encodedData = stakingContract.methods.stake(100).encodeABI();
console.log('Encoded Data:', encodedData);

Estimating gasLimit

The following examples demonstrate how to estimate the gasLimit parameter required for interacting with a staking smart contract. We provide examples using different web3 libraries: Web3JS, Viem, and Ethers.

note

To ensure that the transaction has enough gas, we recommend using the estimated gas limit from the provider, adding 25% as a buffer, and then adding an additional 100,000 units for fail-safe calculations. This ensures the transaction won’t run out of gas, even for complex contract interactions.

Show Example Staking Contract and ABI
pragma solidity ^0.8.0;

contract StakingContract {
mapping(address => uint256) public stakes;
uint256 public totalStakes;

function stake(uint256 amount) public {
require(amount > 0, "Amount must be greater than zero");
stakes[msg.sender] += amount;
totalStakes += amount;
}

function withdraw(uint256 amount) public {
require(amount > 0 && stakes[msg.sender] >= amount, "Invalid amount");
stakes[msg.sender] -= amount;
totalStakes -= amount;
}

function getStake(address user) public view returns (uint256) {
return stakes[user];
}
}
{
"abi": [
{
"inputs": [
{
"internalType": "uint256",
"name": "amount",
"type": "uint256"
}
],
"name": "stake",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "amount",
"type": "uint256"
}
],
"name": "withdraw",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "user",
"type": "address"
}
],
"name": "getStake",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
}
]
}
import Web3 from 'web3';
import contractABI from './stakingContractABI';

const web3 = new Web3('<YOUR_INFURA_OR_ALCHEMY_URL>');
const contractAddress = '<YOUR_CONTRACT_ADDRESS>';
const account = '<YOUR_ACCOUNT_ADDRESS>';

const stakingContract = new web3.eth.Contract(contractABI, contractAddress);

async function estimateGas() {
const estimatedGas = await stakingContract.methods.stake(100).estimateGas({ from: account });
const gasLimit = Math.floor(estimatedGas * 1.25) + 100000; // Add 25% and 100k for safety
console.log('Estimated Gas Limit:', gasLimit);
}

estimateGas();

Response

Returns a promise that resolves to a SolutionResponse.

type SolutionResponse = Array<Solution> | FailedSolution;

interface Solution {
destinationChain: number;
destinationTokenAddress: string;
duration: number; // Time estimate in seconds
fee: Amount;
gasCost: Amount;
senderAddress: string;
sourceChain: number;
sourceTokenAddress: string;
amount: string;
tool: Tool;
transaction: Transaction;
approvals?: Array<Transaction>;
}

interface FailedSolution {
error: string;
}

Example Response

Gas Estimation Tip

For better accuracy when dealing with contract calls and transactions, it’s recommended to estimate the gasPrice and gasLimit using your own blockchain provider. This ensures that the values reflect the current network conditions and avoid overpaying or underestimating gas fees.

[
{
"sourceChain": 84532,
"destinationChain": 11155111,
"sourceTokenAddress": "0x036CbD53842c5426634e7929541eC2318f3dCF7e",
"destinationTokenAddress": "0x1c7D4B196Cb0C7B01d743Fbc6116a902379C7238",
"senderAddress": "0x3e101ec02e7a48d16dade204c96bff842e7e2519",
"tool": {
"name": "Sygma-Testnet",
"logoURI": "https://scan.buildwithsygma.com/assets/images/logo1.svg"
},
"gasCost": {
"amount": "221055913000",
"amountUSD": 0
},
"fee": {
"amount": "1000000000000000",
"amountUSD": 0
},
"amount": "100000000",
"duration": 60000000000,
"transaction": {
"data": "0x73c45c98000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000540000000000000000000000000000000000000000000000000000000005f5e10000000000000000000000000000000000000000000000000000000000000000143e101ec02e7a48d16dade204c96bff842e7e251900000000000000000000000000000000000000000000000000000000000000000000000000000000000000023078000000000000000000000000000000000000000000000000000000000000",
"to": "0x9D5C332Ebe0DaE36e07a4eD552Ad4d8c5067A61F",
"from": "0x3E101Ec02e7A48D16DADE204C96bFF842E7E2519",
"value": "0x38d7ea4c68000",
"gasPrice": "0xf433d",
"gasLimit": "0x35f48",
"chainId": 84532
},
"approvals": [
{
"data": "0x095ea7b30000000000000000000000003b0f996c474c91de56617da13a52b22bb659d18e0000000000000000000000000000000000000000000000000000000005f5e100",
"to": "0x036CbD53842c5426634e7929541eC2318f3dCF7e",
"from": "0x3E101Ec02e7A48D16DADE204C96bFF842E7E2519",
"value": "0x0",
"gasPrice": "0xf433d",
"gasLimit": "0xe484",
"chainId": 84532
}
]
}
]